- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gettings, Bethany (2)
-
Bahmani, Keivan (1)
-
Behrendt, Mei Grace (1)
-
Bornowski, Nolan (1)
-
Bryson, Abigail_E (1)
-
Chitwood, Daniel_H (1)
-
Chiu, Christina (1)
-
Clark, Caron (1)
-
Dauer, Joseph (1)
-
Dong, Wei (1)
-
Elliott, McKenna (1)
-
Engelgau, Philip (1)
-
Frank, Margaret_H (1)
-
Gomezcano, Fabio (1)
-
Gregory, Luke_M (1)
-
Haber, Anna_C (1)
-
Hoh, Donghee (1)
-
Jennings, Emily_E (1)
-
Ji, Zhongjie (1)
-
Kaur, Prabhjot (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionModels are a primary mode of science communication and preparing university students to evaluate models will allow students to better construct models and predict phenomena. Model evaluation relies on students’ subject-specific knowledge, perception of model characteristics, and confidence in their knowledge structures. MethodsFifty first-year college biology students evaluated models of concepts from varying biology subject areas with and without intentionally introduced errors. Students responded with ‘error’ or ‘no error’ and ‘confident’ or ‘not confident’ in their response. ResultsOverall, students accurately evaluated 65% of models and were confident in 67% of their responses. Students were more likely to respond accurately when models were drawn or schematic (as opposed to a box-and-arrow format), when models had no intentional errors, and when they expressed confidence. Subject area did not affect the accuracy of responses. DiscussionVariation in response patterns to specific models reflects variation in model evaluation abilities and suggests ways that pedagogy can support student metacognitive monitoring during model-based reasoning. Error detection is a necessary step towards modeling competence that will facilitate student evaluation of scientific models and support their transition from novice to expert scientists.more » « less
-
Bryson, Abigail_E; Wilson_Brown, Maya; Mullins, Joey; Dong, Wei; Bahmani, Keivan; Bornowski, Nolan; Chiu, Christina; Engelgau, Philip; Gettings, Bethany; Gomezcano, Fabio; et al (, Applications in Plant Sciences)PremiseLeaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitisspp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. MethodsUsing homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. ResultsWe found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DiscussionObservations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape—an assemblage of modeled leaf snapshots across the shoot—is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.more » « less
An official website of the United States government
